1.	(a)	Calculation of energy required by atom (1) Answer [1.8 (eV)] (1) <u>Example of answer:</u> Energy gained by atom = 13.6 eV – 3.4 eV = 10.2 eV KE of electron after collision = 12 eV – 10.2 eV = 1.8 eV	2	
	(b)	Use of $E = hf$ and $c = f\lambda$ (1) Conversion of eV to Joules (1) Answer = $[1.22 \times 10^{-7} \text{ m}]$ (1) Example of answer $E = hf$ and $c = f\lambda$ $E = hc/\lambda$ $\lambda = (6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-2}) \div (10.2 \text{ eV} \times 1.6 \times 10^{-19} \text{ C})$		
		$\lambda = 1.21 \times 10^{-7} \text{ m}$	3	[5]
2.	(a)	Diffraction is the change in direction of wave or shape or wavefront (1) when the wave passes an obstacle or gap (1)	2	
	(b)	The energy of the wave is concentrated into a photon (1) One photon gives all its energy to one electron (1)	2	
	(c)	Energy of photon increases as frequency increases OR reference to $E = hf(1)$ Electrons require a certain amount of energy to break free and this corresponds to a minimum frequency (1)	2	[6]
3.	(a)	Meaning of statement		

3. (a) Meaning of statement

 $(5.89 \times 10^{-19} \text{ J} / \text{work function})$ is the energy needed to remove an electron [allow electrons] from the (magnesium) <u>surface/plate</u>

Consequent mark

Minimum energy stated or indicated in some way [e.g. at least /or more] (1) 2

(b) (i) Calculation of time

Use of P = IA (1) Use of E = Pt (1) [use of E = IAt scores both marks] Correct answer [210 (s), 2 sig fig minimum, no u.e.] (1) [Reverse argument for calculation leading to either intensity, energy or area gets maximum 2 marks] Example calculation: $t = (5.89 \times 10^{-19} \text{ J})/(0.035 \text{ W m}^{-2} \times 8 \times 10^{-20} \text{ m}^2)$

(ii) How wave-particle duality explains immediate photoemission

QOWC (1)

<u>Photon energy</u> is hf/ depends on frequency / depends on wavelength (1)

One/Each photon ejects **one/an** electron (1)

The (photo)<u>electron</u> is ejected **at once/immediately (1)** [not just 'photoemission is immediate']

[9]

3

4

1

2

1

4. (a) <u>Blue light:</u> Wavelength / frequency / (photon) energy

> (b) (i) <u>Frequency:</u> Conversion of either value of eV to Joules Use of f = E / hCorrect frequency range $[4.8 \times 10^{14} - 8.2 \times 10^{14} \text{ Hz or range} = 3.4 \times 10^{14} \text{ Hz}]$ [no penalty for rounding errors] eg. $2 \text{ eV} = 2 \times 1.6 \text{ x } 10 - 19 = 3.2 \times 10 - 19 \text{ J}$ $= 6.63 \times 10^{-34} \times f$ $f = 4.8 \times 10^{14} \text{ Hz}$ $3.4 \text{ eV} = 3.4 \times 1.6 \times 10^{-19} = 5.4 \times 10^{-19} \text{ J}$ $f = 8.2 \times 10^{14} \text{ Hz}$ 3

- (ii) <u>Diagrams:</u> Downward arrow from top to bottom level On larger energy gap diagram
- (c) (i) <u>Resistivity drop:</u> Less heating / less energy lost / greater efficiency / lower voltage needed / less power lost

		(ii)	Resistance: Recall of $R = \rho L/A$ Use of $R = \rho L/A$ Correct answer [80(Ω)] [allow 80–84 (Ω) for rounding errors] Eg. $R = (2 \times 10^{-2} \times 5.0 \times 10^{-3}) / (3.0 \times 10^{-3} \times 4.0 \times 10^{-4})$ $= 83 \Omega$	3	[10]
5.	(a)	Ligh Calco Use o	$\frac{\text{of spectrum}}{\text{t / Visible / red (1)}}$ ulation of work function of $\varphi = \frac{hc}{\lambda} (1)$	1	
		(6.63	× 10^{-19} [2 sig fig minimum] (1) 3×10^{-34} J s)(3.00×10^8 m s ⁻¹)/(6.5×10^{-7} m) 3.06×10^{-19} J	2	
	(b)	(i)	<u>Meaning of stopping potential</u> Minimum potential difference between C and A / across the photocell (1) Which reduces current to zero OR stops electrons reaching A / crossing the gap / crossing photocell (1)	2	
		(ii)	<u>Why the graphs are parallel</u> Correct rearrangement giving $V_s = hf/e - \varphi/e$ (1) Gradient is h/e which is constant / same for each metal (1)		
			[Second mark can be awarded without the first if no rearrangement is given, or if rearranged formula is wrong but does represent a linear graph with gradient h/e]	2	[7]

6.

(a) (i) <u>Table</u>

λf2.4(110)1.22200.8330All wavelengths correct (2)[One or two wavelengths correct gets 1]Both frequencies correct (1)[Accept extra zero following wavelength figure, e.g. 2.40.Accept units written into table, e.g. "2.4 m", "220 Hz"]

(ii) <u>Why nodes</u>

		(11)	<u>Why nodes</u> String cannot move / no displacement / zero amplitude /		
			no oscillation / phase change of π on reflection / two waves		
			cancel out / two waves are exactly out of phase (1) (OR have phase difference of π OR half a cycle) /		
			destructive interference	1	
	4 \				
	(b)	-	waves with more nodes represent higher energies		
			e nodes means shorter wavelength (1) nentum will be larger (1)		
			Allow 1 mark for "More nodes means higher frequency and $E = hf$ "]	2	[6]
					[6]
7.	(a)	<u>Why</u>	statement correct		
		Blue	photon has more energy than red photon (1)		
		Why	statement incorrect		
		carri unit	beam carries less energy per unit area per second / Blue beam es less energy per second / Blue beam carries less energy per area / Blue beam has lower intensity and intensity = energy per unit per second		
		Addi	tional explanation		
			ler "correct"] Blue has a higher frequency (OR shorter wavelength) / ler "incorrect"] Blue beam has fewer photons (1)		
		[Allo	ow reverse statements about Red throughout part a]	3	
	(b)	(i)	Meaning of work function		
			Energy to remove an electron from the surface (OR		
			metal OR substance) (1)		
			[Don't accept "from the atom". Don't accept "electrons".] Minimum energy / Least energy / Energy to just		
			$/ \dots$ without giving the electron any kinetic energy (1)	2	
		(ii)	Calculation of threshold frequency		
		()	Use of $\varphi = hf_0$ (1)		
			Correct answer $[6.00 \times 10^{14} \text{ Hz}]$ (1)		
			e.g.		
			$(3.98 \times 10^{-19} \text{ J})/(6.63 \times 10^{-34} \text{ J s}) = 6.00 \times 10^{14} \text{ Hz}$	2	
					[7]

8.	(a)	Which transition Use of $(\Delta)E = hc/\lambda$ OR $(\Delta)E = hf$ and $f = c/\lambda$ (1) Use of 1.6×10^{-19} (1) Correct answer [1.9 eV] (1) C to B / -1.5 to - 3.4 (1) [Accept reverse calculations to find wavelengths] e.g. $(6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m s}^{-1})/(656 \times 10^{-9} \text{ m})(1.6 \times 10^{-19} \text{ J eV}^{-1})$ = 1.9 eV	4	
	(b)	Explanation of absorption line QOWC (1) Light of this wavelength is absorbed by hydrogen (1) In the outer part of the Sun (OR Sun's atmosphere) (1) Absorbed radiation is reemitted in all directions (1) Transition from B to C (OR -3.4 to -1.5) (1)	Max 4	
	(c)	Why galaxy receding Wavelength increased (OR stretched) / red shift / frequency decreased	1	[9]
9.	(a)	<u>Work function:</u> <u>Energy</u> needed for an <u>electron</u> to escape the surface / to be released (from the metal) (1)	1	
	(b)	How current produced: Any 3 from: <u>Photon</u> of light passes <u>energy</u> to an <u>electron</u> If energy above the work function/frequency above threshold (1)(1) Electron released as a photoelectron / photoelectron released / surface electron released (1) Moving electrons produce a current	3	
	(c)	 (i) <u>Intensity of light increased:</u> More electrons released (1) (ii) <u>Frequency of light increased:</u> Electrons gain more (kinetic) energy (1) 	2	

(d)	Use Corr	ton energy: of $f = v/\lambda$ or $E = hc/\lambda$ (1) rect answer for E (4.7 × 10 ⁻¹⁹ J or 2.96 eV) (1) w 3.0 eV]	2
	f = v	mple: $\lambda = 3 \times 10^8 / 4.2 \times 10^{-7} = 7.1 \times 10^{14} \text{ Hz}$ $hf = 4.7 \times 10^{-19} \text{ J or } 2.96 \text{ eV}$	
		$hc/\lambda = 3 \times 10^8 \times 6.63 \times 10^{-34}/ 4.2 \times 10^{-7}$ 7 × 10 ⁻¹⁹ J or 2.96 eV	
(e)	Kno Corr	kinetic energy: wledge that ke _{max} = energy calculated in (d) – ϕ (1) rect answer for ke _{max} (0.26 eV or 4.2 × 10 ⁻²⁰ J) w 0.25–0.26 eV or 4.1 – 4.2 × 10 ⁻²⁰ J and allow ecf from (d)] (1)	2
	ke _{ma}	mple: $_{1x} = 2.96 \text{ eV} - 2.7 \text{ eV}$ 26 eV	
(f)	(i)	<u>Why current reduced:</u> Many / some electrons will not have enough (kinetic) <u>energy</u> to reach the anode / only electrons with large (kinetic) energy will reach the anode (1)	1
	(ii)	Stopping potential:	

(ii) Stopping potential: eV = (-) ke V = ke / e = 0.26V (1)

[12]

- **10.** (a) [Treat parts (i) and (ii) together. Look for any FIVE of the following points. Each point may appear and be credited in either part (i) or part (ii)]
 - (i) Light (OR radiation OR photons) releases electrons from cathode
 - Photon energy is greater than work function / frequency of light > threshold frequency / flight > fo / wavelength of light is shorter than threshold wavelength / $\lambda < \lambda_0$
 - PD slows down the electrons (OR opposes their motion OR creates a potential barrier OR means they need energy to cross the gap)
 - Electrons have a range of energies / With the PD, fewer (OR not all) have enough (kinetic) energy (OR are fast enough) to cross gap
 - Fewer electrons reach anode / cross the gap

		(ii)	• (At or above V_s) no electrons reach the anode / cross the gap		
			• Electrons have a maximum kinetic energy / no electrons have enough energy (OR are fast enough) to cross		
			ANY FIVE (1)(1)(1)(1)(1)	
			[Don't worry about whether the candidate is describing the effect of increasing the reverse p.d. (as the question actually asks), or simply the effect of having a reverse p.d.]	5	
	(b)	Effe	cts on the stopping potential		
		(i)	No change (1)		
		(ii)	Increases (1)	2	
		[Igno	ore incorrect reasons accompanying correct statements of the effect]		[7]
11.	(a)	-	ain how vapour emits light		
			rons excited to higher energy levels (1)	2	
		as th	ey fall they emit photons/electromagnetic radiation/waves/energy (1)	2	
	(b)	(i)	Meaning of spectral line		
			(when the light is split up) each frequency/wavelength/photon energy is seen as a separate/discrete line (of a different colour) (1)	1	
		(ii)	Calculation of frequency		
			Recall of $v = f\lambda$ (1)		
			Correct answer $[f = 5.1 \times 10^{14} \text{ Hz}]$ (1)	2	
			Example of calculation:		
			$v = f \lambda$		
			$3.0 \times 10^8 \text{ m s}^{-1} = f \times 589 \times 10^{-9} \text{ m}$		
			$f = 5.1 \times 10^{14} \text{ Hz}$		
	(c)	<u>Expl</u>	anation of different colours		
			rent colours = different freq/wavelengths / photons of different gies (1)		
		-	on energy/frequency/wavelength depends on difference between gy levels (1)		
		diff a	atoms have diff energy levels/diff differences in levels (1)	3	

(d) <u>Explanation of transverse waves</u>

12.

variation in E or B-field /oscillations/vibrations/displacement at right angles/perpendicular to direction of travel/propagation [not just motion or movement for both 1st and 3rd part] (1)

[9]

1

(a)	(i)	 Energy level diagram: Arrow showing electron moving from lower level to a higher level (1) Arrow downwards from higher to lower level [must show smaller energy change than upward arrow] (1) 	2
	(ii)	Missing energy: Causes a rise in temperature of a named item (1)	1
	(iii)	Range of energies: Minimum energy when $\lambda = 400 \times 10^{-9}$ m (1) Use of $f = c/\lambda$ (1) Use of $E = hf$ (1) Correct answer [3.1 eV] (1) [allow 3.0 - 3.3 eV for rounding errors] [no u.e] eg. $f = 3 \times 10^8 / 400 \times 10^{-9}$ $= 7.5 \times 10^{14}$ Hz $E = hf = 5.0 \times 10^{-19}$ J E = 3.1 eV	4
(b)		acting forgeries: ery would glow / old painting would not glow (1)	1
(a)		<u>r Power</u> of $D = I = 2^2$ [no component needed for this model (1)	

13. (a) Solar Power Use of $P = I\pi r^2$ [no component needed for this mark] (1) Use of cos 40 or sin 50 (with *I* or *A*) (1) 2.2 [2 sf minimum. No ue] (1) 3 e.g. $P=1.1 \times 10^3$ W m⁻² × cos 40 × π (29 × 10⁻³ m)²

= 2.2 W

[8]

l

(b)

16.

(a)

15.

14.

(a)

(b)

Use of $c = f\lambda$ (1) 1.8×10^{-11} [2 sf minimum. No ue] (1) e.g. f = $(-1.8 \text{ keV} - (-69.6 \text{ keV})) \times (10^3 \times 1.6 \times 10^{-19} \text{ J keV}^{-1}) / 6.6 \times 10^{-34} \text{ J s}$ $= 1.64 \times 10^{19} \text{ Hz}$ $\lambda = 3.00 \times 10^8 \text{ m s}^{-1} / 1.64 \times 10^{19} \text{ Hz}$ $= 1.8 \times 10^{-11} \text{ m}$

[Accept gamma rays] (1)

Meaning of energy level

<u>Type</u> X rays

PhysicsAndMathsTutor.com

(b) Energy Use of E = Pt (1)

Graph

- $1.8 \times 10^4 \text{ J/}2.0 \times 10^4 \text{J}$ (1) e.g. $E = 2.2 \text{W} \times (2.5 \times 3600 \text{ s})$ $= 2.0 \times 10^4 \text{ J}$
- Straight line with positive gradient (1) Starting the straight line on a labelled positive f_0 (1) [Curved graphs get 0/2. Straight line below axis loses mark 2 unless that bit is clearly a construction line.] <u>Work function</u> From the y intercept (1) [Accept if shown on graph]

[Accept if shown on graph] OR Given by gradient $\times f_0$ (or $h \times f_0$) [Provided that f_0 is marked on their graph, or they say how to get it from the graph] OR Read f and E_k off graph and substitute into $E_k = hf - \varphi$ [Curved graph can get this mark only by use of hf_0 or equation methods.] 1

 (c) <u>Gradient</u> Gradient equals Planck constant (1)
 [Curved graph can't get this mark]

Wavelength

eV to J (1)

Use of $\Delta E = hf(\mathbf{1})$

[5]

2

1

2

[4]

4

1

[5]

	Specific allowed energy/energies (of electron in an atom)(1)				
	<u>Meaning of photon</u> Quantum/packet/particle of energy/radiation/light/electromagnetic wave (1)				
	Formula for photon energy $E_2 - E_1$ (1) [Allow $E_1 + E_{photon} = E_2$]				
	Explanation of photon wavelengths				
	Same	e energy change / same energy difference / energy the same (1)	1		
		ning of coherent			
	Rem	ains in phase / constant phase relationship(1)	1		
17.	(a)	ExplanationQOWC (1)UV/red photon (1) $E_{\rm UV} > E_{\rm R}$ / $f_{\rm uv}$ (1) $E_{\rm UV} > \Phi$ / $f_{\rm uv} > f_{\rm TH}$ (so electron can break free) (1)One photon absorbed by one electron (1)Both metal plate and electron are negative or repel (each other) (1)	2 max 2		
	(b)	 (i) <u>Intensity red light increased</u> nothing / no discharge (1) (ii) <u>Intensity of UV increased</u> (Coulombmeter) discharges quicker (1) 	2		
	(c)	<u>Max KE</u> Use of $E = hc/\lambda$ (1) conversion of eV to J or vice versa i.e. appropriate use of 1.6×10^{-19} (1) Subtraction $hc/\lambda - \Phi$ [must use same units] or use of full equation (1) max KE = 2.2×10^{-19} J (1)	4		
		[Candidates may convert photon energy to eV leading to max KE = 1.4 eV]			

[10]

18.	Explanation of 'excited'		
	Electrons/atoms gain energy (1)		
	and electrons move to higher (energy) levels (1)	2	
	[Credit may be gained for diagrams in this and the next 3 parts]		
	Explanation of how radiation emitted by mercury atoms		
	Electrons (lose energy as they) drop to lower levels (1)		
	Emit photons / electromagnetic radiation (1)	2	
	Explanation of why only certain wavelengths are emitted		
	Wavelength (of photon) depends one energy (1)		
	Photon energy depends on difference in energy levels (1)		
	Levels discrete / only certain differences / photon energies possible (1) (and therefore certain wavelengths)	3	
	Why phosphor emits different wavelengths to mercury		
	Different energy levels / different differences in energy levels (1)	1	
	Calculation of charge		
	Q = It (1)		
	$= 0.15 \text{ A} \times 20 \times 60 \text{s}$		
	= 180 C (1)	2	[10]
			[,0]
19.	Example of light behaving as a wave		

Any one of:

- diffraction
- refraction
- interference
- polarisation (1)

	What is meant by	y monochromatic		
	Single colour / w	vavelength / frequency (1)	1	
	Completion of g	<u>raph</u>		
	Points plotted co	rrectly [-1 for each incorrect point] (1) (1)		
	Line of best fit a	dded across graph grid (1)	3	
	What $eV_{\underline{s}}$ tells us			
	Maximum (1)			
	Kinetic energy of	of the electrons / $\frac{1}{2} mv^2$ of electrons (1)	2	
	Threshold freque	ency for sodium		
	Correct reading f	from graph: 4.3×10^{14} Hz (1)	1	
	[Accept 4.1 × 10	$^{14} - 4.7 imes 10^{14} \mathrm{Hz}$]		
	Work function			
	$f = hf_0 = 6.63 \times$	10^{-34} J s × 4.3 × 10^{14} Hz (1)		
	$= 2.9 \times 10^{-19} \text{J}$ [A	allow ecf] (1)	2	
	-	requency is needed		
	-	aires certain amount of energy to escape from surface (1)		
		comes from one photon of light (1)		
	• $E = hf(1)$		Max 2	[12]
				[]
20	Photoelectric eff	ect		
20.	(a) Explanation			
		eory: one photon (interacts with) one electron (1)		
		bry allows energy to 'build up', i.e. time delay (1)	2	
	(b) Explanation	on:		
		eory: f too low then not enough energy (is released by knock out an electron) (1)		
	Wave theo	bry: Any frequency beam will produce enough energy (to releate emit whatever the frequency) (1)	ase an electron, 2	[4]

21. Description of photon

21.	Description of photon		
	Packet/quantum/particle of energy [accept $E = hf$ for energy] (1) (1)		
	[allow {packet/quantum/particle} of {light/e-m radiation/e-m wave} etc for (1) X] [zero marks if error of physics such as particle of light with negative charge]	2	
	Show that energy to move electron is about 8×10^{-20} J		
	W = QV(1)		
	$= 1.6 \times 10^{-19} \text{ C} \times 0.48 \text{ V}$		
	$= 7.7 \times 10^{-20} $ J [no ue] (1)	2	
	Calculate efficiency of photon energy conversion		
	Efficiency = $(7.7 \times 10^{-20} \text{ J} \div 4.0 \times 10^{-19} \text{ J})$ [ecf] (1)		
	= 0.19 or 19 % (1)	2	
			[6]
22.	Diagram		
	One arrow straight down (from -3.84 to -5.02) (1) Two arrows down (from -3.84 to -4.53 , then -4.53 to -5.02) (1)	2	
	Transition T		
	T from -5.02 to -1.85 upwards (1)	1	
	Kinetic energy values and explanation of what has happened to lithium atom in each case		
	0.92 eV (1)		
	Atom stays in -5.02 (eV) level/nothing happens to it (1)		
	0.43 eV (1)		
	Atom excited to -4.53 (eV) level (1)	4	
	Full credit is given to candidates who take the k.e. of the electron to be 0.92 J after collision. Any TWO correct energies with correct statement.		
			[7]
23.	Incident photon energies		
	Use of $E = hf(1)$		

Use of $c = f \lambda$ [ignore × 10^X errors] (1) ÷ *e* (1) For 320 nm *E* = 3.9 (eV) **and** 640 nm *E* = 1.9 (eV) (1)

Photocurrent readings

	Photocurrent readings		
	Work function of Al > 3.9 / energies of the incident photons OR threshold frequency is greater than incident frequencies (1)		
	For Li ($\phi = 2.3 \text{ eV} / f = 5.6 \times 10^{14} \text{ Hz} / \lambda = 540 \text{ nm}$ hence) a photocurrent at 320 nm but not 640 nm (1) If intensity $\times 5$ then photocurrent $\times 5$ (1)	3	
	<u>Stopping Potential</u> $KE_{max} = 4.00/3.88 - 2.30 = 1.7/1.58$ [ignore anything with only <i>e</i>] (1) $V_{S} = 1.7/1.58$ V (1)	2	[9]
24.	Ionisation energy		
	$(10.4 \text{ eV}) \times (1.6 \times 10^{-19} \text{ J eV}^{-1}) $ (1)		
	$\frac{(10.4 \text{ CV}) \times (1.0 \times 10^{-18} \text{ J} \text{ CV}^{-1})}{(-) 1.66 \times 10^{-18} \text{ (J)} (1)}$	2	
	Kinetic energy		
	0.4 (eV) (1)	1	
	Transition		
	Use of $E = hc/\lambda$ (1)		
	3.9 (eV) (1) Transition is <u>from</u> (–)1.6 eV <u>to</u> (–)5.5 eV	3	
		5	[6]
25.	Deductions about incident radiations		
	(i) Radiations have same frequency/same wavelength/ same photon energy (1)		
	(ii) Intensity is greater in (a) than in (b) (1)	2	
	<u>Sketch graph (c)</u>		
	Line of similar shape, starting nearer the origin \underline{on} negative V axis (1)	1	
	Maximum speed		
	Use of $E = hf(1)$		

Use of E = hf(1)Subtract 7.2 × 10⁻¹⁹ (J) (1) Equate to $\frac{1}{2} m v^2$ (1) 3.1 × 10⁶ ms⁻¹ (1)

[7]

26.	Wave	elength		
	Dista	nce between two points in phase (1)		
	Dista	nce between successive points in phase (1)	2	
	[May	get both marks from suitable diagram]		
	Sunb	urn more likely from UV		
	UV (photons) have more energy than visible light (photons) (1)		
	Since	e shorter wavelength / higher frequency (1)	2	
	What	happens to atoms		
	Move	e up energy levels/excitation/ionization (1)		
	Corre	ectly related to electron energy levels (1)	2	
				[6]
27.	Error	in circuit diagram		
		needs to be reversed (1)		
		one point from:		
	• el	ectrons released from the magnesium		
	• cc	opper wire needs to be positive to attract electrons (1)	2	
	Com	pletion of sentence		
	UV is	s made up of particles called <u>photons (1)</u>	1	
	<u>UV a</u>	nd visible light		
	(i)	UV has shorter wavelength/higher frequency/higher photon energy (1)		
	(ii)	Both electromagnetic radiation/both transverse waves/same speed (in vacuum) (1)	2	
	<u>Expla</u>	anation of why low intensity UV light produces a current		
	Any	three points from:		
	• re	ference to photons or $E = hf$		
	• fre	equency > threshold frequency		
	• el	ectron must have sufficient energy to be released		
	• U	V photons have more energy		
	• el	ectron is released by ONE photon		

• brighter light just means more photons (1) (1) (1) Max 3

Why current stopped

Glass prevents UV reaching magnesium (1)

28. Description

Electron (near surface of cathode) absorbs photon and gains energy (1)	
Work function is energy needed for electron to escape from surface (1)	
Electrons released in this way are called photoelectrons (1)	-

Lowest frequency of radiation

 $f_0 = E/h (1)$ = 2.90 × 10⁻¹⁹ J/6.63 × 10⁻³⁴ J s (1) = 4.37 × 10¹⁴ Hz (1)

Suitability of potassium

 $\lambda = 3 \times 10^8$ m s⁻¹ / 4.37 × 10¹⁴ Hz [use of lowest frequency] (1) 6.86 × 10⁻⁷ m [with suitable comment] (1)

OR

 $f = 3 \times 10^8 \text{ m s}^{-1} / 4.0 \times 10^{-7} \text{ and } f = 3 \times 10^8 \text{ m s}^{-1} / 7.0 \times 10^{-7} \text{ [uses range of } \lambda\text{] (1)}$ $f = 7.5 \times 10^{14} \text{ Hz to } 4.3 \times 10^{14} \text{ Hz [with suitable comment] (1)}$

[Suitable comment – e.g. this is within range of visible light/almost all of the visible light photons will emit photoelectrons]

Maximum kinetic energy

Use of $E = hc/\lambda$ AND minimum wavelength (1)

Max photon energy = hc/λ = 6.63 × 10⁻³⁴ J s × 3 × 10⁸ m s⁻¹/(400 × 10⁻⁹m)

 $= 4.97 \times 10^{-19} \text{ J} \text{ [no u.e]}$

Max k.e. = max photon energy – work function [or use equation]

 $= 4.97 \times 10^{-19} \text{ J} - 2.90 \times 10^{-19} \text{ J}$

$$= 2.07 \times 10^{-19}$$
 J [allow ecf if wrong wavelength used] [no u.e] (1) 3

1

3

3

Why some photoelectrons will have less than this k.e.

One point from:

- photon energy might be transferred to electron below surface
- so some energy transferred to atoms on the way to surface
- hence electron leaves surface with less energy than max
- max is for electron from the surface
- lower energy photon responsible for emission (1)

[12]

29. <u>Table</u>

Radio waves	Sound waves
Transverse	Longitudinal
Travel much faster than sound	Travel more slowly
(Can) travel in a vacuum	Cannot travel in a vacuum
Can be polarised	Not polarised
Electromagnetic	Pressure/Mechanical wave

Any three of the above

Assumption

Attempt to calculate area (1)

Intensity = $0.02 \text{ kW m}^{-2} \text{ OR } 20 \text{ W m}^{-2}$ (1)

Efficiency at *collector* is 100%/beam perpendicular to *collector*

Power

Use of $I P/4\pi r^2$ (1)

Power = 3.3×10^{17} W [ecf their I]

No energy "lost" due to atmosphere (not surroundings) OR Inverse square applies to this situation (1)

More efficient method

Use a laser (maser) / reference to beaming/ray (1)

30. Ionisation energy

Use of
$$\times 1.6 \times 10^{-19}$$

2.2 $\times 10^{-18}$ [No u.e.] (1)

2

1

Max 3

1

[10]

Addition to diagram

	-	
(i)	From 4 to 3 labelled $R / (i)$ (1)	
(ii)	From 1 to 4 labelled $A / (ii)$ (1)	2
Emission s	pectrum	
Hydrogen	'excited' in a discharge/thin tube/lamp [not bulb] (1)	
Viewed thr	ough a diffraction grating/prism/spectrometer (1)	
Appearance	e of emission spectrum	
A series of	lines / colours on a <i>dark</i> background [accept bands] (1)	3
Region of s	spectrum	
Radio/micr	rowave (1)	1
Speed of ga	alaxy and deduction	
$\Delta \lambda = 8 \ (m)$	m) / 211 - 203 (mm) (1)	
Use of $3 \times$	10 ⁸ (1)	
υ = 1. 1(4)	$\times 10^7 \text{ ms}^{-1}$ [No e.c.f.] (1)	
Moving tov	wards Earth (us) (1)	4

[12]

31. <u>Photoelectric effect</u>

Any two features and explanation from the following:

Feature: Experiments show k.e_(max) $\propto f$, OR not intensity [Accept depends upon] (1)

Explanation: [Consequent]	Photon energy $\propto f(1)$
	$k.e_{(max)} \propto$ intensity is a wave theory (1)
Feature:	Emission of photoelectrons immediate (1)
Explanation: [Consequent]	One photon releases one electron particle theory (1) Wave theory allows energy to "build up" (1)
Feature:	(Light) below a threshold frequency cannot release electrons (1)
Explanation:	Particle theory- <i>f</i> too low as not enough energy is released

	[Consequent]	by photon to knock out an electron (1)		
		Wave theory- if leave a low frequency beam on long enough, it will produce enough energy to release an		
		electron (1)		1111111111111
				[Max 5]
32.	Planck constan	<u>nt</u>		
	Realise that <i>h</i> is Correct attemption	is the gradient ot to find gradient [but ignore unit errors here]		
		$) \times 10^{-34}$ J s [No bald answers]	3	
	Work function			
		e intercept on T axis/use of $\phi = hf - T$ (1)	2	
	$\phi = (3.4 \text{ to } 3.9)$) $\times 10^{-19}$ J [-1 if -ve] [2.1 to 2.4 eV] (1)	2	[5]
33.	Energy of phot	ton of light		
	E = hf = 6.63	$\times 10^{-34} \text{ J s} \times 6.0 \times 10^{14} \text{ Hz} = 3.98 \times 10^{-19} \text{ (J)}$	1	
	<u>Graph</u>			
		$(\pm \frac{1}{2} \text{ square})$ (2)		
		t line of best fit (NOT giving intercept below 4.5×10^{14}) (1) far as <i>f</i> axis (1)	4	
	Line urawn as		4	
	Value for <i>h</i>			
	Large triangle	[at least 7 cm on K.E. axis] (1)		
	Gradient = e.g.	$(6.05 - 4.55) \times 10^{14} / 1.0 \times 10^{-19} = 1.5 \times 10^{33} (1)$		
	h = 1/gradient	= 6.67 × 10 ⁻³⁴ J s (1)	3	
	-			
	Value of ϕ			
	Reading co-oro	dinates of a fixed point on graph (e.g. 0, 4.55×10^{14}) (1)		
	φ from equatio	on, e.g.		
	so ϕ = freque	ency intercept $\times h$		
	U U	$ imes 10^{14} imes 6.67 imes 10^{-34}$		
	= 3.03 × 10-	-19 J (1)	2	

Explanation

Not enough energy [OR frequency too low] For 2nd mark, numerical/added detail required, e.g calculation: $E = 6.63 \times 10^{-34} \times 4.5 \times 10^{14}$ Hz = $2.98 \times 10^{-19} < \phi$ OR threshold frequency read from graph

[12]

2

1

34. Explanation of "coherent" In / constant phase (difference) (1)

symbol 51 \f "Monotype Sorts" \s 123 (1)

Power delivered by laser

$$P = \frac{40}{400 \times 10^{-15}}$$
(1)
= 1 × 10¹⁴ W (1) 2

Energy level change

$$\upsilon = f\lambda / f = \frac{3 \times 10^8}{1050 \times 10^{-9}} \quad [-1 \text{ if omit } 10^{-9}] \text{ (1)}$$

Use of $E = hf / 6.6 \times 10^{-34} \times \frac{3 \times 10^8}{1050 \times 10^{-9}} \text{ (1)}$
[If $f = 1/T$ used, give this mark]
 $= 1.9 \times 10^{-19} \text{ J (1)}$

35. <u>Calculation:</u>

 $E = hc/\lambda \text{ [seen or implied]} (1)$ physically correct substitutions (1) $\div 1.6 \times 10^{-19} \text{ eV J}^{-1} (1)$ 5.78 eV (1) $\underline{\text{Maximum kinetic energy:}}$ 3.52 eV [ecf but not if -ve.] (1)

[6]

4

Stopping potential:	
3.52 V [Allow e.c.f., but not signs] (1)	2
Annotated graph:Position of S(1)Cuts V axis between origin and existing graph(1)Similar shape[I levels off up/below existing line](1)	3

36. Energy of photon of green light:

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m s}^{-1}}{5.58 \times 10^{-7} \text{ m}} = 5.38 \times 10^{14} \text{ Hz (1)}$$
$$E = hf = 6.63 \times 10^{-34} \text{ J s} \times 5.38 \times 10^{14} \text{ Hz (1)}$$
$$= 3.56 \times 10^{-19} \text{ J}$$

Diagram:

Larger gap identified (1)

Downwards arrow between levels of same element (1)

37. <u>Diffraction</u>:

The spreading out of waves when they pass through a narrow slit or around an object (1) <u>Superposition:</u>

Two or more waves adding (1)

to give a resultant wave [credit annotated diagrams] (1)

Quantum:

A discrete/indivisible quantity (1)	4
Particles:	
Photon/electron (1)	1

[9]

[4]

What the passage tells us:

Any 2 points from:

- large objects can show wave-particle duality
- quantum explanations now used in "classical" solutions
- quantum used to deal with sub-atomic particles and classical with things we can see Max 2

38. Ionisation energy of atomic hydrogen:

13.6 eV OR
$$2.18 \times 10^{-18}$$
 J [- sign, **X**] (1)

Why energy levels are labelled with negative numbers:

Work/energy is needed to raise the electrons/atoms to an energy of 0 eV, so	
must start negative	(1)(1)

OR

Work/energy is given out when the electrons/atoms move to the ground state, so energy now less than 0, i.e. negative	(1)(1)
OR	
the ground state is the most stable/lowest energy level of the electrons/atoms and must be less than 0, i.e. negative	(1)(1)
	2
[1 st mark essential: e ⁻ highest/maximum/surface/ionised/free has	

energy = 0eV

 2^{nd} mark: raising levels means energy in OR falling levels means energy out \therefore negative levels]

Wavelength of photon:

$$\Delta E = 1.89 \text{ (eV)} \tag{1}$$

Convert ΔE to joules, i.e. $\times (1.6 \times 10^{-19})$

OR

$$\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.89 \ (\times 1.6 \times 10^{-19})} \quad [\text{Their } E] \tag{1}$$

$$= 6.6 \times 10^{-7} \text{ (m)} \quad [6.5 - 6.7] \tag{1}$$

3

[7]

Production of line spectrum of atomic hydrogen in a laboratory:

Source – hydrogen discharge tube/hydrogen lamp/low <i>p</i> hydrogen with	
high V across	(1)
(view through) diffraction grating/prism/spectrometer/spectroscope	(1)
	2

Sketch:

A few vertical **lines** on a blank background OR sharp bands Dark on light/light on dark NOT equally spaced

(**1**)

Max 4

[9]

Absorption spectrum:

White light through gas in container (1) Diffraction grating/prism/spectrometer (1) Must be dark lines on bright background (1)

39. Threshold wave:

Electron requires certain amount of energy to escape from surface (1) This energy comes from one photon (1) Use of E = hf(1)

(So photon needs) minimum frequency (1)

Hence maximum wavelength

OR use of $E = hc/\lambda$ (1)

Work function:

$$f = c/\lambda = 3.0 \times 10^8 / 700 \times 10^{-9} \text{ m (1)}$$

= 4.28 × 10⁻¹⁴ Hz (1)
$$E = hf = 6.63 \times 10^{-34} \text{ J s} \times 4.28 \times 10^{-14} \text{ Hz} = 2.84 \times 10^{-19} \text{ (J) [Allow e.c.f.] (1)}$$
 3

Circuit :

Circuit showing resistors only in series (1)

Potentials labelled (1) [Use of potential divider – allowed] Resistor values 1: 1: 1 OR 1:2 (1)

Suggestion:

Cosmic rays travel more slowly than light (1)

40. Calculation of kinetic energy:

 $f = \frac{3 \times 10^8 \, m \, \text{s}^{-1}}{\lambda} (E = hf = 1.63 \times 10^{-17} \, \text{J}) \text{ (1)}$

 ϕ converted to J: $6.20\times1.6\times10^{-19}$ OR Photon energy converted to eV: $1.63\div1.6\times10$

(Subtract to obtain kinetic energy)

Kinetic energy = $(1.5 - 1.56) \times 10^{-17}$ J[OR 95.7/97.4 eV] [Beware 1.6398 0/3; > 101 eV 0/3]

Demonstration of speed of electrons:

 $1.53 \times 10^{-17} \text{ J} = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times v^2$ (1) [e.c.f their kinetic energy in joules]

 $v = 5.8 \times 10^6 \text{ m s}^{-1}$ (1) [If v is not between 5 and 7 must comment to get mark]

[5]

41. Explanation of line spectra:

Specific frequencies or wavelengths (1) Detail, e.g. absorption/emission (1)

OR within narrow band of wavelengths

2

Max 2

1

[10]

Explanation how line spectra provide evidence for existence or energy levels in atoms:

Photons (1)		
Associated with particular energies (1)		
Electron transitions (1)		
Discrete levels (to provide line spectra) (1)	3	
		[5]

42. Explanation:

	Photons/quanta			
	Photon releases / used electron Energy/frequency of red < energy/frequency of ultra violet			
	Red insufficient energy to release electrons so foil stays		4	
	Ultraviolet of greater intensity: foil/leaf collapses quicker/faster Red light of greater intensity: no change/nothing			
	Observations if zinc plate and electroscope were positively charged: Foil rises <i>or</i> Foil stays same/nothing			
	as electrons released it becomes more	Released electrons attracted back by		
	positive	positive plate/more difficult to		
		release electrons	2	
				[8]

43. Energy level diagram:

 $-13.6 \rightarrow 0$

$$-1.51 \rightarrow 0$$
 AND $-3.39 \rightarrow 0$ ONLY

Why level labelled -13.6 eV is called ground state: Correct reference to stability/lowest energy state/level of the electron/ atom/hydrogen

Transition which would result in emission of light of wavelength 660 nm:

Correct use of $c = f\lambda$ or $E = hc/\lambda$ or $f = \frac{3 \times 10^8 \text{ ms}^{-1}}{660 \times 10^{-9} \text{ m}}$ Correct use of eV/J i.e. $\div 1.6 \times 10^{-19}$ $\Delta E = 1.88$ Transition = $1.5 \rightarrow 3.39$ [May be a downward arrow on diagram] 4

44. Use of graph to estimate work function of the metal:

 $\phi = (6.63 \times 10^{-34} \text{ J s}) (6.0 \times 10^{14} \text{ Hz}) - (\text{some value})$ Value in brackets: $(1.6 \times 10^{-19} \times 0.5 \text{ J})$ $3.2 \times 10^{-19} \text{ J } or 2 \text{ eV}$ Addition to axes of graph A obtained when *intensity* of light increased: A starts at -0.5 A \rightarrow larger than /max
Addition to axes of graph B obtained when *frequency* of light increased: B starts at less than - 0.5 B \rightarrow same of lower than /max
4
[7]

1

[7]

45. Ionisation energy:

> 2810 eV (4.5 ×10-16 J) (1)

Calculation of maximum wavelength:

Energy in eV chosen above converted to joules Use of $\lambda = c/f$ (1) Maximum wavelength = 4.4×10^{-10} m (1)

Part of electromagnetic spectrum: γ-ray / X-ray (1)

Calculation of the de Broglie wavelength: *p* identified as momentum $\lambda = h/p$ (1) Either *m* or v correctly substituted (1) Wavelength = 1.1×10^{-13} m (1)

3

5

[Total 8 marks]

- **46**. Experiments on the photoelectric effect show that
 - the kinetic energy of photoelectrons released depends upon the frequency of the incident light and not on its intensity,

(1)

light below a certain threshold frequency cannot release photoelectrons.

How do these conclusions support a particle theory but not a wave theory of light?

(1)

Particle theory: E = hf implied packets/photons (1) One photon releases one electron giving it k.e. (1) Increase $f \Rightarrow$ greater k.e. electrons (1) Lower f; finally ke = O ie no electrons released Waves (1) Energy depends on intensity / (amplitude)² (1) More intense light should give greater k.e-NOT SEEN (1) More intense light gives more electrons but no change in maximum kinetic energy (1) Waves continuous : when enough are absorbed electrons should be released-NOT SEEN

(6 marks)

Calculate the threshold wavelength for a metal surface which has a work function of 6.2 eV. 6.2eV \times 1.6 \times 10⁻¹⁹ C (1)

Use of
$$\lambda = \frac{hc}{E}$$
 (1)

Threshold wavelength = 2.0×10^{-7} m (1)

To which part of the electromagnetic spectrum does this wavelength belong? UV ecf their λ (1)

(4 marks) [Total 10 marks]